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Summary. The relative shapes of molecular electron density contour surfaces 
(MIDCO's), and various molecular shape constraints in solvent-solute inter- 
actions, in external electromagnetic fields and within enzyme cavities, are represen- 
table by electron density T-hulls, introduced earlier. Three general properties of 
T-hulls are proven, serving as the justification of a recently proposed computa- 
tional scheme of molecular similarity measures. 
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1 Introduction 

The concept of a-hull has been introduced by Edelsbrunner et al. [1] as a gen- 
eralization of convexity. The T-hull, introduced recently [2], can be regarded as 
a generalization of the c~-hull, hence, as a further generalization of the convex hull. 
The chemical relevance of T-hulls lies in their role as tools for shape analysis of 
electronic densities [3-1, as the basis of molecular similarity measures, and as math- 
ematically precise representations of solvent contact surfaces of molecules [4]. By the 
introduction of the MEDLA method for ab initio quality electron density computa- 
tions for proteins and other large molecules [5-7],  the role of computational shape 
analysis methods designed for molecular applications [8] is expected to increase. 

In Ref. [1], the introduction of two-dimensional e-hulls has been based on 
the concept of generalized disc of radius l/a, defined as a disc of radius 1/a if a > 0, 
the complement of a disc of radius - 1/a if a < 0, and a half-plane if c~ = 0. The 
a-hull (S)~ of a point set S in the plane has been defined as the intersection of all 
closed generalized discs of radius 1/a which contain S. 

Following the description in [3], the three-dimensional case is entirely analog- 
ous. A generalized bali of radius 1/c~ is defined as a ball of radius 1/a if a > 0, as 
the complement of a ball of radius - 1/a if a < 0, and as a half-space if a = 0. 
The a-hull (S)~ of a finite point set S in a 3D Euclidean space is defined as the 
intersection of all closed generalized balls of radius 1/a which contain S. 

The a-hull ( S ) ,  of S is a "curvature-biased" shape representation of S, using the 
specific curvature value a. For  a finite point set S (for example, for the collection of 
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nuclei in a specific configuration) and for a sufficiently small negative value of a, the 
a-hull (S)~ of S is the finite point set S itself. In the special case of a = 0, the a-hull 
( S ) ,  of set S is the ordinary convex hull (S )  of S. According to the usual 
convention, the empty intersection is regarded as the entire space, consequently, 
the a-hull of any set S exists for any a value. 

The T-hull of both discrete point sets and continua has been introduced [2] as 
a generalization of the convex hull with respect to a reference object T. Within the 
chemical context, a shape characterization of the molecular electronic density of 
a molecule A in terms of its T-hull defined by an electronic density contour of 
another molecule B serves as a direct shape comparison of molecules A and B, and 
also as a "B-biased" shape representation of molecule A. 

Following the original definition [2-1, consider an arbitrary, bounded and 
closed, three-dimensional set T, and regard it as a reference object. Using T-hulls, 
the shapes of various other objects S are described relative to the reference object T. 

If a reference object T (for example, a molecular isodensity contour surface, 
MIDCO, of a molecule B) is selected, then any set obtained by translation and 
rotation of T is called a version of T. Some motions may be excluded, for example, 
the test object T may be required to fulfill some orientation constraints; in such 
cases a version of T is a set obtained from T by translation. 

The T-hull (S)T of a point set S has been defined [2-1 as the intersection of all 
rotated and translated versions of T which contain set S. If no version Tv of 
T contains S then the T-hull of S is the empty intersection, interpreted as the full 
space. Consequently, the T-hull (S)T exists for every set S and for every reference 
object T. Evidently, the T-hull of a set S depends on the shapes of both objects, 
S and T, more specifically, on the relative shapes of S and T. 

In some applications, for example, in solvent contact surface analysis, the 
closure c los(Ea\T)  of the relative complement E3\T of T is required. Following 
the notation used in I-2-4], the expression - T stands for the closure of the relative 
complement of T: 

-- T = c los(E3\T) .  (l) 

Fig. 1. A two-dimensional 
example of an object S, 
reference object T, the 
inclusion relations of S for two 
versions, T v and To,, of T, and 
the actual T-hull (S) r of S 
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By analogy with a-hulls of negative c~ values, the set ( - T) can also be chosen as 
a reference object. 

In order to aid the visualization of properties of T-hulls, a two-dimensional 
example is given in Fig. 1. 

2 Three identities for T-hulls 

The first identity we prove is a simple generalization of an elementary property 
of convex hulls: for any set S the convex hull ( ( S ) )  of the convex hull (S)  is the 
convex hull (S),  i.e., 

<<s>> = (s>.  (2) 

Clearly, the convex hull is already convex. 
For T-hulls the analogous relation applies. The theorem and its proof given 

below are valid in all finite dimensions n. 

Theorem 1. For any set S and reference set T, the T-hull ( ( S ) r ) r  of the T-hull ( S ) r  
is the T-hull (S ) r :  

( ( S ) r ) r  = (S)r .  (3) 

Proof According to the definition of T-hulls, (S ) r  contains S, hence, each version 
To of T that contains (S ) r  also contains S: 

To = (S ) r  => ro = s. (4) 

Let us denote the family of all such versions To by V,. The intersection of all 
sets in V, is ( ( S ) r ) r .  

We show now that each version To, of T that contains S also contains (S)r .  
Since To, ~ S, this version To, must occur in the intersection defining (S ) r ,  
consequently, Tv, D (S) r :  

To, = S => To, = (S)T. (5) 

Let us denote the family of all such versions To, by V2. The intersection of all 
sets in V2 is (S)T. 

Since the two implications (4) and (5) are inverses of each other, the two sets 
V1 and V2 must agree: 

V1 = V2 = V. (6) 

The intersection of all sets in V is both ( ( S ) r ) r  and (S)r ,  consequently, 

<<S>r>r = <S>r. [] (7) 

The assertion of this theorem corresponds to the rhyme "the T-hull of the 
T-hull is the T-hull". 

The T-hull <S>r itself can be used as a reference set. In such a ease, a different 
rhyme applies: "the T-hull-hull is the T-hull". We prove this below. This theorem 
and its proof are also valid in all finite dimensions n. 

Theorem 2. For any set S and reference set T, the T-hull <S>r of set S is the 
(S)T-hull (S><s>r of S, obtained with the T-hull (S>T as reference set: 

(S )<s> ,  = (S)r. (8) 
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Proof By the definition of T-hulls, (S)<s>T is the intersection of all versions 
((S)r)v, of (S)T which contain S. 
(i) First we show that (S)<s>,. is an intersection of some versions To,,, of T which 
contain S. 

By the definition of T-hulls, set ( S ) r  is the intersection of all versions Tv of 
T which contain S: 

(S>r = ("]~Tv. (9) 

Consequently, each version ((S)r)v, which contains S is also an intersection of 
some versions T~,, of T which contain S. Since (S)<s>,. is the intersection of all 
versions ((S)r)~, which contain S, the set (S)<s>,. must be the intersection of some 
versions T~,,, of T which contain S: 

(S)<s>T = Nv,((S>r)~, = 0o,(N,,,T,,,)~, = ("}v,,,T~,,,. (10) 

(ii) We show that the families of sets T~ and Tv,,, in the intersections of Eqs. (9) and 
(10) are the same. 

(a) Since (S ) r  itself can be chosen as a version ((S)r)~, which contains S, for 
each version T~ of Eq. {9), 

rv = (S>r = (S><s>T, (11) 

must hold. Hence, each Tv of Eq. (9) is one version of T that contains (S)<s>T. 
Consequently, for each version T, of Eq. (9) there must exist a version T,,,, of the 
intersection in the far right of Eq. (10) such that 

T~ . . . .  T~. (12) 

(b) Since for each version T~,,, of the intersection in Eq. (10) 

T~,,, ~ (S)<s>,, D S (13) 

must hold, each Tv,,, of Eq. (10) is one version of T that contains S. Consequently, 
for each version Tv,,, of Eq. (10) there must exist a version Tv of the intersection in 
Eq. (9) such that 

T~ = T.,,.. (14) 

Consequently, the intersections (~.T~ and Nv,.,To.,, are the same, hence 

<S)<s>, = (S)r .  [] (15) 

Another important property of T-hulls is a formal "shape quantization" effect, 
whenever a set S is transformed into its T-hull. This "shape quantization" is based 
on the following simple result. 

Theorem 3. For any set S, reference set T, and set S' fulfllin9 the condition 

(S)T = S' = S, (16) 

the two T-hulls ( S ) r  and (S')T are the same: 

(S'>r = (S>T. (17) 

Proof By the definition of T-hulls, (S )r  is the intersection of all versions T~ of 
T which contain S. Let us denote the family of all these T~ versions by V. For each 
of these versions, 

Tv = ( S ) r  = S'. (18) 
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Consequently, each version Tv from the family V participates in the intersection of 
versions of T containing S' and defining (S')r. There exists no additional version 
T~, containing S' and not present in the family V, since if a version T~, contains S' 
then according to relation (16) it must also contain S, hence T~, must be present in 
family V. Consequently, (S')r  is the intersection of all sets in family V, hence 
( S ' ) r =  (S)r .  [] 

Theorem 3 and its proof are valid in all finite dimensions n. 
This result implies that for an entire continuum of sets S', where the condition 

(S)T = S' ~ S holds, the T-hulls are invariant. By a continuous change of set 
S into ( S ) r ,  all intermediate sets S' have the constant T-hull ( S ) r ,  as long as none 
of these sets S' "hangs out" from the T-hull ( S ) r  of the initial set S. 

Note that Theorem 3 can be regarded as a generalization of Theorem 1: by 
taking S' = ( S ) r  in Theorem 3, the statement of Theorem 1 follows. 

3 Comments and closing remarks 

For molecular shape analysis problems with some orientation constraints, for 
example, if an external electric field is applied on polar molecules, the oriented 
T-hull approach has been proposed 1-2, 3-]. In such cases, only those versions Tv of 
the reference set T are included in the intersections which fulfill the appropriate 
orientation constraints. For  example, using the most severe orientation restriction 
by disallowing rotation, only translated versions of the reference set T are used in 
the intersections. 

Alternatively, one may include reflected versions of the reference set T besides 
the translated and rotated versions; for chiral reference sets this implies that a 
larger family of versions is considered in the intersections 1-2, 3]. 

For  any of these alternatives, Theorems 1-3 apply, with the same proofs as given 
above, where in each case the versions of the reference set T from the restricted or 
enlarged families are used throughout. 

If both objects S and T are selected as molecular isodensity contour surfaces 
(MIDCO's), then the T-hulls can be regarded as "relative shape envelopes" of 
molecular electron density contours. Usually, T-hulls show less shape detail than 
the original MIDCO S, and the T-hulls of two different molecules are often more 
similar than their individual MIDCO's  themselves. This suggests a shape classifica- 
tion by T-hulls, where MIDCO's  of two different molecules are regarded T-similar 
if the T-hulls of the two MIDCO's  show equivalent shape features, for example, 
common shape groups [3]. Note that common shape groups for the T-hulls are 
possible even if the shape groups of the two MIDCO'  do not agree. 

Within a chemical context, T-hulls have been proposed for modeling solvent 
contact surfaces in the shape analysis of solvent-solute interactions [4]. In this 
model, the T-hull (S)T of a solute electron density level set S is generated with 
respect to a reference object T where ( - T)  is taken as an electron density level set 
of the solvent molecule. Theorem 3 implies that if the solute S undergoes some 
limited shape change in a conformational process and takes up a new form S', then 
the solvent contact surface <S ' ) r  = <S>T remains invariant as long as <S>r ~ S'. 
The entire continuum of conformationaI changes and the associated electron density 
shape changes within the range <S)r  D S' ~ S belong to the single, constant T-hull 
( S ) r ,  i.e., to the single, constant solvent contact surface ( S ) r .  
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